CSE-411 Machine Learning



E-mail: atik@cse.green.edu.bd

🕾 Mob. +8801912961096

:office: Room: A-510 Desk No. : 06

Class Routine – Summer 2025 Semester


Time
Day
08:30 - 10:00 10:00 - 11:30 11:30 - 01:00 Break 01:30 - 03:00 03:00 - 04:30
Sat CSE 412 221_D3
K-101
CSE 412 221_D3
K-101
    CSE 411 221_D3
K-105
 
Sun CSE 318 231_D3
K-101
CSE 318 231_D3
K-101
    CSE 411 221_D3
K-105
 
Mon CSE 412 221_D3
K-101
CSE 412 221_D3
K-101
    CSE 411 221_D3
K-105
Capstone Project/Thesis Meeting
Tue CSE 318 231_D3
K-101
CSE 318 231_D3
K-101
       
Wed            



Topic Outline

Lecture Selected Topic Article Problems
(1) Introduction Class Notes  
(2-6) Supervised Learning (Regression, Classification, Linear Regression, Logistic Regression, Importance of designing effective cost function, convex function, learning parameters and parameter optimization concepts) Class Notes Assignment 1
(7-10) Bayesian Decision Theory (review of probability concepts, uncertainty modeling, likelihood, posterior probability, naive decision rules, sensitivity and specificity) Class Notes  
(11-12) Parametric and non-parametric Methods for density estimation Class Notes Quiz 1
(13-14) Unsupervised Learning (Association rule, KMeans Clustering, etc.) Class Notes  
  Midterm Exam    
(15-15) Perceptron learning (basic architecture and limitations) Class Notes Call for a Group Project
(16-19) Multilayer Perceptrons (importance of non-linearity, understanding artificial neural network architecture, cost function, understanding multivariate calculus and its role in Neural networks, Stochastic Gradient Descent optimization, hyperparameter tuning) Class Notes  
(20-21) Introduction to Graphical Models Class Notes Quiz 2
(22-25) Time series modeling/online learning (Markov model, Hidden Markov Models, and their applications, Bayesian Networks) Class Notes  
(26-28) Reinforcement Learning (Markov decision processes and Q-learning) Class Notes  
(29-30) Design and Analysis of Machine Learning Experiments Class Notes  
  Final Exam   Â