CSE-435 Data Mining



E-mail: atik@cse.green.edu.bd

🕾 Mob. +8801912961096

:office: Room: A-510 Desk No. : 06

Class Routine – Spring 2025 Semester


Time
Day
09:00 - 10:20 10:20 - 11:40 11:40 - 01:20 Break 01:30 - 02:50 02:50 - 04:10
Sat CSE-435 212_D1 R: J-109 Research Time CSE-436 212_D2 R: K-101      
Sun CSE-315 221_D10 R: A-605 Tutor Time CSE-436 213_D1 R: A-501      
Mon   Research Time     Weekly Academic Meeting  
Tue CSE-315 221_D10 R: A-605 Tutor Time     CSE 316 221_D20 R: K-109  
Wed            
  08:30 - 09:50 09:50 - 11:10 11:10 - 12:50 Break 02:00 - 03:20 03:20 - 04:40
Fri CSE-435 212_D1 R: J-109 Tutor Time CSE-436 212_D1 R: J-108      



Topic Outline

Lecture Selected Topic Article Problems
(1-3) Introduction to Data Mining and its applications    
  What Is Data Mining? Major Issues in Data Mining Ch. 1 Ex. 1.2-1.5, 1.7, 1.9
(4-7) Knowing data, Structured Data, Statistical Data Descriptions    
  Data Visualization, Data Similarity and Dissimilarity Ch. 2 Ex. 2.2-2.4, 2.6, 2.8
(8-9) Data Preprocessing, Cleaning, Integration, and Reduction Ch. 3 Ex. 3.1-3.8
(10) Mining Frequent Patterns Ch. 6.1  
(11-12) Mining Frequent Patterns with Apriori Algorithm Ch. 6.2 Ex. 6.1-6.5
(13-14) Mining Frequent Patterns with Pattern Growth Approach Ch. 6.2.4  
(15) Pattern Evaluation Methods Ch. 6.3  
  Midterm    
(16-18) Classification    
  Decision Tree    
  Bayes Classification Ch. 8 Ex. 8.6, 8.7, 8.9
(19-21) Rule-Based Classification, Evaluation, and Improvement Ch. 8 Ex. 8.13
(22-24) k-Nearest Neighbor, SVM    
  Backpropagation, Neural Network Ch. 9 Ex. 9.1-9.3
(25-27) Clustering    
  k-Means, k-Medoids, DBSCAN, Hierarchical Clustering Ch. 10.1-10.4 Ex. 10.2-10.7
(28-29) Sequential Pattern Mining, GSP Algorithm    
(30) Presentation and Assignment submission - Â