CSE-412 Machine Learning Lab
E-mail: atik@cse.green.edu.bd
🕾 Mob. +8801912961096
Room: A-510 Desk No. : 06
Class Routine – Spring 2025 Semester
Time Day | 09:00 - 10:20 | 10:20 - 11:40 | 11:40 - 01:20 | Break | 01:30 - 02:50 | 02:50 - 04:10 |
---|---|---|---|---|---|---|
Sat | CSE-435 212_D1 R: J-109 | Research Time | CSE-436 212_D2 R: K-101 | Â | Â | Â |
Sun | CSE-315 221_D10 R: A-605 | Tutor Time | CSE-436 213_D1 R: A-501 | Â | Â | Â |
Mon | Â | Research Time | Â | Â | Weekly Academic Meeting | Â |
Tue | CSE-315 221_D10 R: A-605 | Tutor Time | Â | Â | CSE 316 221_D20 R: K-109 | Â |
Wed | Â | Â | Â | Â | Â | Â |
 | 08:30 - 09:50 | 09:50 - 11:10 | 11:10 - 12:50 | Break | 02:00 - 03:20 | 03:20 - 04:40 |
Fri | CSE-435 212_D1 R: J-109 | Tutor Time | CSE-436 212_D1 R: J-108 | Â | Â | Â |
Topic Outline
Lecture | Selected Topic | Article | Problems |
---|---|---|---|
(1) | Introduction | Class Notes | Â |
(2-6) | Supervised Learning (Regression, Classification, Linear Regression, Logistic Regression, Importance of designing effective cost function, convex function, learning parameters and parameter optimization concepts) | Class Notes | Assignment 1 |
(7-10) | Bayesian Decision Theory (review of probability concepts, uncertainty modeling, likelihood, posterior probability, naive decision rules, sensitivity and specificity) | Class Notes | Â |
(11-12) | Parametric and non-parametric Methods for density estimation | Class Notes | Quiz 1 |
(13-14) | Unsupervised Learning (Association rule, KMeans Clustering, etc.) | Class Notes | Â |
 | Midterm Exam |  |  |
(15-15) | Perceptron learning (basic architecture and limitations) | Class Notes | Call for a Group Project |
(16-19) | Multilayer Perceptrons (importance of non-linearity, understanding artificial neural network architecture, cost function, understanding multivariate calculus and its role in Neural networks, Stochastic Gradient Descent optimization, hyperparameter tuning) | Class Notes | Â |
(20-21) | Introduction to Graphical Models | Class Notes | Quiz 2 |
(22-25) | Time series modeling/online learning (Markov model, Hidden Markov Models, and their applications, Bayesian Networks) | Class Notes | Â |
(26-28) | Reinforcement Learning (Markov decision processes and Q-learning) | Class Notes | Â |
(29-30) | Design and Analysis of Machine Learning Experiments | Class Notes | Â |
 | Final Exam |  |  |