CSE-411 Machine Learning



E-mail: atik@cse.green.edu.bd

🕾 Mob. +8801912961096

:office: Room: A-510 Desk No. : 06

Class Routine – Spring 2025 Semester


Time
Day
09:00 - 10:20 10:20 - 11:40 11:40 - 01:20 Break 01:30 - 02:50 02:50 - 04:10
Sat CSE-435 212_D1 R: J-109 Research Time CSE-436 212_D2 R: K-101      
Sun CSE-315 221_D10 R: A-605 Tutor Time CSE-436 213_D1 R: A-501      
Mon   Research Time     Weekly Academic Meeting  
Tue CSE-315 221_D10 R: A-605 Tutor Time     CSE 316 221_D20 R: K-109  
Wed            
  08:30 - 09:50 09:50 - 11:10 11:10 - 12:50 Break 02:00 - 03:20 03:20 - 04:40
Fri CSE-435 212_D1 R: J-109 Tutor Time CSE-436 212_D1 R: J-108      



Topic Outline

Lecture Selected Topic Article Problems
(1) Introduction Class Notes  
(2-6) Supervised Learning (Regression, Classification, Linear Regression, Logistic Regression, Importance of designing effective cost function, convex function, learning parameters and parameter optimization concepts) Class Notes Assignment 1
(7-10) Bayesian Decision Theory (review of probability concepts, uncertainty modeling, likelihood, posterior probability, naive decision rules, sensitivity and specificity) Class Notes  
(11-12) Parametric and non-parametric Methods for density estimation Class Notes Quiz 1
(13-14) Unsupervised Learning (Association rule, KMeans Clustering, etc.) Class Notes  
  Midterm Exam    
(15-15) Perceptron learning (basic architecture and limitations) Class Notes Call for a Group Project
(16-19) Multilayer Perceptrons (importance of non-linearity, understanding artificial neural network architecture, cost function, understanding multivariate calculus and its role in Neural networks, Stochastic Gradient Descent optimization, hyperparameter tuning) Class Notes  
(20-21) Introduction to Graphical Models Class Notes Quiz 2
(22-25) Time series modeling/online learning (Markov model, Hidden Markov Models, and their applications, Bayesian Networks) Class Notes  
(26-28) Reinforcement Learning (Markov decision processes and Q-learning) Class Notes  
(29-30) Design and Analysis of Machine Learning Experiments Class Notes  
  Final Exam   Â