CSE-411 Machine Learning
E-mail: atik@cse.green.edu.bd
🕾 Mob. +8801912961096
Room: A-510 Desk No. : 06
Class Routine – Spring 2025 Semester
| Time Day | 09:00 - 10:20 | 10:20 - 11:40 | 11:40 - 01:20 | Break | 01:30 - 02:50 | 02:50 - 04:10 |
|---|---|---|---|---|---|---|
| Sat | CSE-435 212_D1 R: J-109 | Research Time | CSE-436 212_D2 R: K-101 | Â | Â | Â |
| Sun | CSE-315 221_D10 R: A-605 | Tutor Time | CSE-436 213_D1 R: A-501 | Â | Â | Â |
| Mon | Â | Research Time | Â | Â | Weekly Academic Meeting | Â |
| Tue | CSE-315 221_D10 R: A-605 | Tutor Time | Â | Â | CSE 316 221_D20 R: K-109 | Â |
| Wed | Â | Â | Â | Â | Â | Â |
| Â | 08:30 - 09:50 | 09:50 - 11:10 | 11:10 - 12:50 | Break | 02:00 - 03:20 | 03:20 - 04:40 |
| Fri | CSE-435 212_D1 R: J-109 | Tutor Time | CSE-436 212_D1 R: J-108 | Â | Â | Â |
Topic Outline
| Lecture | Selected Topic | Article | Problems |
|---|---|---|---|
| (1) | Introduction | Class Notes | Â |
| (2-6) | Supervised Learning (Regression, Classification, Linear Regression, Logistic Regression, Importance of designing effective cost function, convex function, learning parameters and parameter optimization concepts) | Class Notes | Assignment 1 |
| (7-10) | Bayesian Decision Theory (review of probability concepts, uncertainty modeling, likelihood, posterior probability, naive decision rules, sensitivity and specificity) | Class Notes | Â |
| (11-12) | Parametric and non-parametric Methods for density estimation | Class Notes | Quiz 1 |
| (13-14) | Unsupervised Learning (Association rule, KMeans Clustering, etc.) | Class Notes | Â |
| Â | Midterm Exam | Â | Â |
| (15-15) | Perceptron learning (basic architecture and limitations) | Class Notes | Call for a Group Project |
| (16-19) | Multilayer Perceptrons (importance of non-linearity, understanding artificial neural network architecture, cost function, understanding multivariate calculus and its role in Neural networks, Stochastic Gradient Descent optimization, hyperparameter tuning) | Class Notes | Â |
| (20-21) | Introduction to Graphical Models | Class Notes | Quiz 2 |
| (22-25) | Time series modeling/online learning (Markov model, Hidden Markov Models, and their applications, Bayesian Networks) | Class Notes | Â |
| (26-28) | Reinforcement Learning (Markov decision processes and Q-learning) | Class Notes | Â |
| (29-30) | Design and Analysis of Machine Learning Experiments | Class Notes | Â |
| Â | Final Exam | Â | Â |