Data, measurements, and data preprocessing: Mathematical Note

1 Basic Statistical Descriptions of Data

1.1 Measures of Central Tendency

1.1.1 Ungrouped Data

e Mean: The average value. For a set of n values {z1,xa,...,z,}:
n
_ 1
r = — E xZ;
n-
i=1

Example: For the data set {2,3,3,5,7,10}:

L_2FBE3H54THI0 30
- . -2 =

e Median: The middle value in an ordered data set.

— If n is odd, the median is the value at position (n + 1)/2.

— If n is even, it’s the average of the two middle values.

Example (0Odd): For {2,3,4,6,8}, the median is 4.
Example (Even): For {2,3,3,5,7,10}, the median is 3—;5 =4.

e Mode: The most frequently occurring value.

Example: In the data set {2,3,3,5,7,10}, the mode is 3.

1.1.2 Grouped Data
For data organized into frequency distribution tables.

e Mean of Grouped Data:
Zf:l fzmz

n

xr =

where k is the number of classes, f; is the frequency of the i-th class, m; is the midpoint of the

i-th class, and n = Zle fi is the total number of data points.

e Median of Grouped Data:

n_F
MedianL+<2 7 )w

where:

— L = lower boundary of the median class.

— n = total frequency.

— F = cumulative frequency of the class preceding the median class.

— f = frequency of the median class.

— w = width of the median class.

e Mode of Grouped Data:

_ fm,ffl w
Mode =L+ <(fm—f1)+(fm—f2)>

where:

— L = lower boundary of the modal class.

— fm = frequency of the modal class.

— f1 = frequency of the class preceding the modal class.
— fo = frequency of the class succeeding the modal class.

— w = width of the modal class.
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Score Range (Class) | Frequency (f;) | Midpoint (m;) | Cumulative Freq.
41 - 50 4 45.5 4
o1 - 60 7 55.5 11
61 - 70 15 65.5 26
71 - 80 12 75.5 38
81-90 8 85.5 46
91 - 100 4 95.5 50
Total n = 50

Example for Grouped Data: Consider the following frequency distribution of exam scores for 50
students.

e Mean Calculation: Y fim; = (4 x 45.5) + -+ - + (4 X 95.5) = 3525

3525
=222 705
50

I

e Median Calculation: The median position is n/2 = 25. This falls in the 61-70 class. L = 60.5,
n=>50, F =11, f =15, w = 10.

25-11

Median = 60.5 + ( > x 10 =~ 69.83

e Mode Calculation: The modal class (highest frequency) is 61-70. L = 60.5, f,, = 15, f1 = 7,
fo =12, w = 10.
15—-7
(15 —=7) 4 (15 — 12)

Mode = 60.5 + ( ) x 10 ~ 67.77

1.2 Measures of Data Dispersion

e Range: Range = max(z) — min(z)
Example: For {2,3,3,5,7,10}, the range is 10 — 2 = 8.

e Interquartile Range (IQR): IQR = Q3 — Q1
Example: For the ordered data {2,4,5,8,10,12, 15},
— Q1 is the median of the lower half {2,4,5}, so Q1 = 4.
— Q2 (the overall median) is 8.
— Q3 is the median of the upper half {10,12,15}, so Q3 = 12.
~ IQR=12—4=38.

e Variance (0?) and Standard Deviation (¢): For a sample of size n:

1 n
2 _ .72 — /2
s 7n_1§1(x1 z)* and s=Vs
Example: For {2,3,3,5,7,10}, the mean Z is 5.

2 (2-5)2+3B-5)2+(3-52+ -5+ (7T—5)2+(10-5)?
B 6—1

2 (=32 + (=22 4+ (—2)?+02+22+52 9+44+4+0+44+25 46 09
- 5 - 5 S5

The standard deviation is s = v/9.2 ~ 3.03.
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2 Data Visualization

e Boxplot (Box-and-Whisker Plot): Displays the five-number summary.
Example: For the data {2,4,5,8,10,12,15}, the five-number summary is:

— Minimum: 2

- Ql: 4

— Median (Q2): 8
- Q3: 12

— Maximum: 15

These five values define the structure of the boxplot.

3 Proximity for Binary Data

For binary vectors, we use a contingency table based on matching attributes.

Object y
1 0 Total
Object x 1 q r q+r
0 s t s+t
Total | ¢g+s r+t n

e ¢: number of attributes where x =1,y =1

e {: number of attributes where x =0,y =0

Simple Matching Coefficient (SMC)

e For symmetric variables (0 and 1 have equal weight, e.g., gender).

Jaccard Coefficient

e For asymmetric variables (0-0 matches are ignored, e.g., presence of a disease).

SMC =

q

_art
g+r+s+t

:q—l—r—i—s

3.1 Similarity Measures for Symmetric Binary Attributes

3.1.1 Simple Matching Coefficient (SMC)

For symmetric binary attributes where both states are equally important:

SMC(i, j) =

q+t

g+t

qg+r+s+t p

Interpretation: Proportion of attributes where both objects match.

3.1.2 Example: Symmetric Binary Attributes

Consider two patients with symptoms (1 = present, 0 = absent):

Table 1: Symptom Data for Two Patients

Patient | Fever | Cough | Headache | Nausea | Fatigue | Total
i 1 0 1 0 1
j 1 1 1 0 0

Contingency table:
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q
o7
s

o1

*p

2 (Fever, Headache - both have 1)

(
1 (Fatigue - i has 1, j has 0)
(

1 (Cough - i has 0, j has 1)

1 (Nausea - both have 0)

5

SMC(i, )

241 3
T 5 5

- =0.6

3.2 Similarity Measures for Asymmetric Binary Attributes

3.2.1 Jaccard Coefficient

For asymmetric binary attributes where 1-1 matches are more important:

J(i,j) =

q

qg+r+s

Interpretation: Proportion of positive matches among attributes where at least one object has 1.

3.2.2 Example: Asymmetric Binary Attributes

Consider two customers and products they purchased (1 = purchased, 0 = not purchased):

Table 2: Purchase Data for Two Customers

Customer | Product A | Product B | Product C | Product D | Product E | Total

1 1 0 1 0 0

J 1 1 0 0 0
Contingency table:
e ¢ =1 (Product A - both purchased)
e 7 =1 (Product C - i purchased, j didn’t)
e s =1 (Product B - i didn’t purchase, j did)
e ¢t =2 (Products D, E - neither purchased)

. 1 1
TG0 = g7 =3~ 0388

4 Measuring Data Similarity and Dissimilarity

For data objects i = (x1, ..

.,a:ip) andj = (Ijl,..

j = (5,6), for the following examples.

4.1 Distance Measures for Numeric Data

e Euclidean Distance (L2 norm):

Example:

d(i 7)

(Tir, — Tjk)?

d(i,j) =/(2-52+(2-62=+/(-3)2+ (-4 =V9+16=V25=5

., &jp). Let’s use two data points, i = (2,2) and
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e Manhattan Distance (L1 norm):

p
3) = |wik — il
k=1
Example:
d(i,j)=2=5[+2-6[=[-3[+[-4]=3+4=7

e Minkowski Distance: A generalization where h is a positive integer.

» 1/h
i,j) = (Z |z — Ijk|h>
k=1

di,j) = (12— 5P + 12— 6]*)"/* = (3% + 43)"/" = (27 + 64)1/3 = V01 ~ 4.498

Example: For h = 3:

4.2 Cosine Similarity

Measures the cosine of the angle between two non-zero vectors x and y.

. P
COS(X,y): X y _ 1= ]_‘rlyz

Xyl /T 22/, v

Example: Let vector x = (3,4) and vector y = (2, 1).
e Dot product: x-y=(3x2)+(4x1)=6+4=10.
e Magnitudes: ||x|| = V32 +42 =9+ 16 = v/25 = 5.
o |lyl|=v22+12=v4+1=1/5.

e Cosine Similarity:

10 2
COS(X7y) = ﬁ = % ~ 0.894

Since the value is close to 1, the vectors point in a similar direction.

4.3 3D Data Examples

Let’s extend our analysis to three-dimensional data points. Consider two data points in 3D space:
i=(1,3,2) and j = (4,7,5).

e Euclidean Distance (L2 norm) in 3D:

d(i,j) =1 =42 +B-72+(2-52=/(-3)2+ (42 +(-3)2=v9+ 16 + 9 = V34 ~ 5.831

e Manhattan Distance (L1 norm) in 3D:
d(i,j) =1 -4+ 3=T7|+1[2=5|=|-3|+|—4]+|-3|=3+4+3=10
o Minkowski Distance in 3D: For h = 3:
(i, j) = (1 —4P + 3= 7P+ 2= 53" = (33 + 4* + 3%)/? = 27+ 64+ 27)"/2 = Y118 ~ 4.905
e Cosine Similarity in 3D: Let vector x = (1,3,2) and vector y = (4,7, 5).

— Dot product: x-y=(1x4)+B3x7)+(2x5)=4+21+10=35
Magnitudes: ||x|| = V12 +32+22 = 1+ 9 +4 =14 ~ 3.742
lly|| = V42 + 72 + 52 = /16 + 49 + 25 = /90 ~ 9.487

— Cosine Similarity:

35 35
~ 0.936
Cos(X,Y) = 3o 0487~ 355

This very high value (close to 1) indicates the vectors point in almost the same direction in
3D space.
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4.4 Comparison of Measures
The 3D examples demonstrate how these distance measures scale with additional dimensions:
e Euclidean distance considers the straight-line distance in multidimensional space
e Manhattan distance sums absolute differences along each dimension
e Minkowski distance provides a flexible framework that can emphasize larger differences when h > 1
e Cosine similarity remains robust to the magnitude of vectors, focusing only on their directional
relationship
4.5 Cosine Similarity Formula
For two vectors A and B, the cosine similarity is defined as:
A-B S AB;

cosine(A,B) = =
AB) = R8I =~ S 25 B

4.6 Text Vectorization

To apply cosine similarity to sentences:
1. Create a vocabulary from all unique words in both sentences
2. Represent each sentence as a vector in this vocabulary space

3. Use TF (Term Frequency) or TF-IDF weights

4.7 Example 1: Simple Sentence Similarity
4.8 Given Sentences
e Sentence 1: ”I love machine learning”

e Sentence 2: "I love deep learning”

4.9 Step 1: Create Vocabulary

Unique words: {I, love, machine, deep, learning}
Vocabulary size: 5 dimensions

4.10 Step 2: Vector Representation

Using binary representation (1 if word present, 0 otherwise):

Table 3: Binary Vector Representation

I | love | machine | deep | learning
Sentence 1 (A) | 1| 1 1 0 1
Sentence 2 (B) | 1 | 1 0 1 1

A: [1’171707 ]‘}7 B = [17]‘70’ 1’ 1]

4.11 Step 3: Calculate Dot Product
A B=(1x1)+(1x1)+(1x0)+0x1)+(I1x1)=1+14+0+0+1=3

4.12 Step 4: Calculate Magnitudes

JA =V + 12412402+ 12=VI+ 1+ 1+0+1=Vd=2
IBl=vV1I2+ 12402+ 12+ 12=VI+1+0+1+1=1=2
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4.13 Step 5: Compute Cosine Similarity

3 3

cosine(A,B) = 53 = 1°= 0.75

4.14 Example 2: Using Term Frequency (TF)

4.15 Given Sentences
e Sentence 1: ”artificial intelligence is the future of technology”

e Sentence 2: "machine learning is part of artificial intelligence”

4.16 Step 1: Create Vocabulary

Unique words: {artificial, intelligence, is, the, future, of, technology, machine, learning, part}

4.17 Step 2: Binary Vector Representation

Table 4: Binary Vector Representation

artificial | intelligence | is | the | future | of | technology | machine | learning | part
ST (A) 1 1 1] 1 T |1 1 0 0 0
S2 (B) 1 1 1] 0 0 1 0 1 1 1
A = [17 171717 ]" 1, 1707070}7 B = [1717 1707071707 ]" 1’ 1]
4.18 Step 3: Calculate Dot Product
A-B=1x1)+(1Ix1)+(1x1)+(1x0)+(1x0)+
(I1x1)+(1x0)+(0x1)+(0x1)+(0x1)
=14+14+14+04+0+1+04+0+04+0=4
4.19 Step 4: Calculate Magnitudes
JA = VI2+ 124 12412+ 12 412+ 12 + 02 4 0% + 02 = V7 ~ 2.646
IB|| = V124 12+ 12402402+ 12+ 02 + 12 + 12 + 12 = /7 ~ 2.646
4.20 Step 5: Compute Cosine Similarity
. 4 4
COSlne(A, B) = m = ? ~ 0.571
4.20.1 TF-IDF Weighting
For better results, use TF-IDF weights:
TF-IDF(t,d) = TF(t,d) x IDF(t)
where IDF(¢t) = log %, with N being total documents and n; documents containing term t.
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5 Given Data

The age data in ascending order: 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35,
35, 35, 36, 40, 45, 46, 52, 70
Total number of data points: n = 27
5.1 Binning Methods
5.2 Equal-Frequency (Equal-Depth) Binning
Since we have 27 data points, we can create 3 bins with 9 elements each:
e Bin 1: 13, 15, 16, 16, 19, 20, 20, 21, 22
e Bin 2: 22, 25, 25, 25, 25, 30, 33, 33, 35
e Bin 3: 35, 35, 35, 36, 40, 45, 46, 52, 70

5.3 Smoothing by Bin Means

Table 5: Smoothing by Bin Means
Original Data Smoothed Data
13, 15, 16, 16, 19, 20, 20, 21, 22 | 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0
22, 25, 25, 25, 25, 30, 33, 33, 35 | 28.1, 28.1, 28.1, 28.1, 28.1, 28.1, 28.1, 28.1, 28.1
35, 35, 35, 36, 40, 45, 46, 52, 70 | 43.8, 43.8, 43.8, 43.8, 43.8, 43.8, 43.8, 43.8, 43.8

Bin
Bin 1
Bin 2
Bin 3

Calculations:

e Bin 1 mean: 13+15+16+16+199+20+20+21+22 _ 162 _ 18.0

22+425+25425+254304+33+33435 __ 253 _ 28.1
9 .

e Bin 2 mean:

e Bin 3 mean: 35+35+35+36+490+45+46+52+70 — 394 _ 43.8

5.4 Smoothing by Bin Boundaries

Table 6: Smoothing by Bin Boundaries

Boundary Rules:

Bin Original Data Smoothed Data

Bin 1 | 13, 15, 16, 16, 19, 20, 20, 21, 22 | 13, 13, 13, 13, 22, 22, 22, 22, 22
Bin 2 | 22, 25, 25, 25, 25, 30, 33, 33, 35 | 22, 22, 22, 22, 35, 35, 35, 35, 35
Bin 3 | 35, 35, 35, 36, 40, 45, 46, 52, 70 | 35, 35, 35, 35, 70, 70, 70, 70, 70

e For each value, replace with closest boundary (min or max of the bin)

e Bin 1 boundaries: min = 13, max = 22

e Bin 2 boundaries: min = 22, max = 35

e Bin 3 boundaries: min = 35, max = 70

5.5 Smoothing by Bin Median

Calculations:

e Bin 1 median: 5th element (19) from sorted data: 13, 15, 16, 16, 19, 20, 20, 21, 22

e Bin 2 median: 5th element (25) from sorted data: 22, 25, 25, 25, 25, 30, 33, 33, 35

e Bin 3 median: 5th element (40) from sorted data: 35, 35, 35, 36, 40, 45, 46, 52, 70
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Table 7: Smoothing by Bin Median

Bin

Original Data

Smoothed Data

Bin 1 | 13, 15, 16, 16, 19, 20, 20, 21, 22 | 19, 19, 19, 19, 19, 19, 19, 19, 19

Bin 2 | 22, 25, 25, 25, 25, 30, 33, 33, 35 | 25, 25, 25, 25, 25, 25, 25, 25, 25

Bin 3 | 35, 35, 35, 36, 40, 45, 46, 52, 70 | 40, 40, 40, 40, 40, 40, 40, 40, 40

5.6 Comparison of Methods

Table 8: Comparison of Smoothing Methods

Method

Characteristics

Bin Means

Replaces all values in bin with mean, preserves some
statistical properties but loses individual variations

Bin Boundaries

Replaces values with closest boundary, preserves ex-
treme values but creates more discrete distribution

Bin Median

Replaces all values with median, robust to outliers

and preserves central tendency

All three smoothing methods reduce the noise in the data by grouping values into bins and replacing
them with representative values. The choice of method depends on the specific data mining task and

the importance of preserving certain data characteristics.

6 Normalization Methods

6.1 Given Data

The original data: 200, 300, 400, 600, 1000

6.2 Min-Max Normalization

Given: new_min = 0, new_max = 1

Formula:

Where:
e miny = 200

e max4 = 1000

max 4 — ming4

v — ming

e new.max —newmin=1—-0=1

Calculations:

X (new_max — new_min) + new_min

QOO/ZH“N:%:O.OOO
_9 1
300’:Hx1+0=%:0.1z5
400/:%“%:%:0250
600’:Hx1+0:%:0.500
1000 — 200 800
1000 = {0 X 1+0= S = 1000

Result: 0.000, 0.125, 0.250, 0.500, 1.000
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6.3 Z-Score Normalization

Formula:

Where:

o 1 = mean — 200+3005400560041000 _ 2500 _ 5))

5

e o = standard deviation

Calculate standard deviation:

ZZL:l (zi — p)?

o =
n
B \/(200 —500)2 + (300 — 500)2 + (400 — 500)2 + (600 — 500)2 + (1000 — 500)2
o 5
B \/(—300)2 + (=200)2 + (—100)2 + (100)2 + (500)2
- 5
7 \/ 90000 + 40000 + 10000 + 10000 + 250000
- 5
400000
= = /80000 = 282.843
Calculations:
200 — 500 —300
[ — e
200" = 282.843 ~ 282.843 1.061
300 — 500 —200
[ — e
300" = 282.843 ~ 282.843 0.707
400 — -1
400’ = 00 =500 _ 00 _ —0.354

282.843 282.843
- 1
_ 600500 100 0.351

600" = =
282.843  282.843
1000 -500 _ 500 _ oo

282.843  282.843
Result: -1.061, -0.707, -0.354, 0.354, 1.768

1000 =

6.4 Z-Score Normalization using Mean Absolute Deviation

Formula:
e
MAD
Where:
e 1 =500 (same as above)
e M AD = mean absolute deviation
Calculate MAD:
n
1200 — 500] + [300 — 500/ + [400 — 500] + [600 — 500] + [1000 — 500
N 5
~ 300+ 200 + 100 4+ 100 + 500 1200 940
= . =5 =
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Calculations:
200 — 500  —300
e 300240500 i 2380 o
e 400240500 i 2?80 o
400" = 600210500 = 1_% 4(1)0 = 0417
e 100%20 500: %0: o
1000" = % = S50 = 2083

Result: -1.250, -0.833, -0.417, 0.417, 2.083

6.5 Normalization by Decimal Scaling

Formula:
, v
YT 10
Where j is the smallest integer such that max(|v’|) < 1
Find j:

e Maximum absolute value in data: 1000
e We need 107 > 1000
e 103 = 1000 (not sufficient since we need < 1)

e 10* = 10000 > 1000 (sufficient)

Soj=4
Calculations:
200
200" = @ = 0.0200
300" = 127880 = 0.0300
400" = % = 0.0400
600" = 110000000 = 0.0600
1000" = 10000 = 0.1000

Result: 0.0200, 0.0300, 0.0400, 0.0600, 0.1000

6.6 Summary of Results

Table 9: Comparison of Normalization Methods

Method 200 300 400 600 1000
Original Data 200 300 400 600 1000
Min-Max [0,1] 0.000 | 0.125 | 0.250 | 0.500 | 1.000
Z-Score -1.061 | -0.707 | -0.354 | 0.354 | 1.768
Z-Score (MAD) | -1.250 | -0.833 | -0.417 | 0.417 | 2.083
Decimal Scaling | 0.0200 | 0.0300 | 0.0400 | 0.0600 | 0.1000
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6.7 Characteristics of Each Method
e Min-Max: Preserves relationships among original data values, bounded between 0 and 1
e Z-Score: Results in mean = 0 and standard deviation = 1, good for outlier detection
e Z-Score (MAD): More robust to outliers than standard z-score, uses mean absolute deviation

e Decimal Scaling: Simple method that preserves data relationships by moving decimal point

7 Discretization Methods
7.1 Equal-Width Binning

Divides the range of values into k intervals of equal width.

7.1.1 Algorithm
1. Find minimum and maximum values: min,4, max4

2. Calculate width: w = m2Xa—mina

3. Create intervals: [ming +(¢ — 1)w, ming +iw) for i = 1,2,...,k

7.1.2 Example

Given data: 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46,
52, 70

k:3,min:13,max:70,w:¥:19

Table 10: Equal-Width Binning

Bin | Range Values
1 [13, 32) | 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30
2 [32, 51) 33, 33, 35, 35, 35, 35, 36, 40, 45, 46
3 [51, 70] 52, 70

7.2 Equal-Frequency Binning

Divides data into k intervals, each containing approximately the same number of observations.

7.2.1 Algorithm
1. Sort data in ascending order
2. Calculate number of observations per bin: npi, = %

3. Create intervals containing np;, observations each

7.2.2 Example
Same data with & = 3, n = 27, npin, = 9

Table 11: Equal-Frequency Binning
Bin | Range Values
13, 22 13, 15, 16, 16, 19, 20, 20, 21, 22
22,35 22, 25, 25, 25, 25, 30, 33, 33, 35
(35, 70] | 35, 35, 35, 35, 36, 40, 45, 46, 52, 70

W DN =
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8 Discretization with Smoothing

8.1 Bin Means Smoothing

Replace all values in a bin with the mean of the bin.

8.1.1 Example

Using equal-frequency bins from previous example:

Table 12: Bin Means Smoothing

Bin Original Values Smoothed Values
1 13, 15, 16, 16, 19, 20, 20, 21, 22 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0, 18.0
2 22, 25, 25, 25, 25, 30, 33, 33, 35 28.1, 28.1, 28.1, 28.1, 28.1, 28.1, 28.1, 28.1, 28.1
3 35, 35, 35, 35, 36, 40, 45, 46, 52, 70 | 42.9, 42.9, 42.9, 42.9, 42.9, 42.9, 42.9, 42.9, 42.9, 42.9

8.2 Bin Boundaries Smoothing

Replace each value with the closest boundary value (min or max of the bin).

8.2.1 Example

Table 13: Bin Boundaries Smoothing

Bin Original Values Smoothed Values
1 13, 15, 16, 16, 19, 20, 20, 21, 22 13, 13, 13, 13, 22, 22, 22, 22, 22
2 22, 25, 25, 25, 25, 30, 33, 33, 35 22,22, 22, 22, 35, 35, 35, 35, 35
3 35, 35, 35, 35, 36, 40, 45, 46, 52, 70 | 35, 35, 35, 35, 70, 70, 70, 70, 70, 70

8.3 Comparison of Methods

Table 14: Comparison of Discretization Methods

Method

Advantages

Disadvantages

Equal-Width

Simple, fast

Sensitive to outliers, uneven distribu-
tion

Equal-Frequency

Handles outliers better, even distribu-
tion

May put same values in different bins

ChiMerge

Supervised, considers class information

Computationally expensive

Entropy-Based

Maximizes information gain, super-
vised

Complex, may overfit

8.4 Practical Considerations

8.5 Choosing the Number of Bins
e Sturges’ Rule: £ =1+logyn

e Square-root Choice: k = /n
e Rice Rule: k = 2n'/?

For our example with n = 27:

e Sturges: k=1410g,27~1+4+4.75=5.75—6
e Square-root: k = V2T~ 519 —5

e Rice: k=2x27"/3~2x3=6
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8.6 Handling Categorical Labels
After discretization, bins can be labeled:

e Numeric: 1, 2, 3, ...

e Descriptive: Low, Medium, High

e Range-based: 13-22, 23-35, 36-70

Discretization is a crucial preprocessing step in data mining that enables the use of categorical
algorithms on continuous data. The choice of discretization method depends on the specific dataset, the
presence of class labels, and the requirements of the subsequent analysis.

9 Introduction to Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique that transforms correlated
variables into a set of uncorrelated variables called principal components. The first principal component
accounts for the largest possible variance in the data, and each succeeding component accounts for the
highest remaining variance under the constraint of being orthogonal to previous components.

9.1 Mathematical Foundations

9.2 Covariance Matrix

Given a data matrix X with n observations and p variables:

11 12 . Tip

T21 X22 o T2p
X =

Tnl Tp2 - Tnp

The covariance matrix X is calculated as:

1
Y= 1X TX (for mean-centered data)
n—
Or explicitly:
011 012 " Olp
021 022 02p
Y= .
Op1 Op2 """ Opp

where o5 = 23 Y50 (e — &) (Thy — 75)

9.3 Eigenvalue Decomposition
PCA involves finding the eigenvalues and eigenvectors of the covariance matrix:
Yvi = \v;
where:
e )\; are eigenvalues (variances of principal components)
e v; are eigenvectors (principal component directions)

e Eigenvalues are ordered: \; > Ap > - > X, >0
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9.4 Principal Components

The principal components are linear combinations of original variables:
PCZ = XVZ‘

The proportion of variance explained by the i-th principal component is:

Aq
Proportion; = —5——
=1
10 Step-by-Step PCA Example
10.1 Given Data
Consider the following 2D dataset with 5 observations:
2 3
4 5
X=1|6 7
8 9
10 11
10.2 Step 1: Mean Centering
Calculate means: T1 =6, o =7
Mean-centered data:
2—-6 3-7 -4 —4
4—-6 5H-T7 -2 =2
X.=|6-6 7-7(=]0 0
8—6 9-7 2 2
10-6 11-7 4 4
10.3 Step 2: Covariance Matrix
—4 —4
-2 =2
1 o 1[-4 -2 0 2 4
i 4[—4 -2 0 2 4] 00
2 2
4 4

s _ 1[40 40] _[10 10
T 4|40 40| — [10 10
10.4 Step 3: Eigenvalue Decomposition

Solve |X — M| = 0:
‘10)\ 10

10 10—/\‘:O

(10 = A\)? — 100 = 0
A —200=0
AA—20)=0
Eigenvalues: Ay =20, A =0
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10.5 Step 4: Eigenvectors
For A\ = 20:
10 — 20 10 V11| _ 0
10 10 — 20 V12 - 0
—10 10 V11| _ 0
10 —10 V12 - 0

V11 = V12, SO0 V1 =

1
Sk
o] [ V)

| I

For Ay = 0:
10 10 V21| 0
10 10 V22 o 0
1
V21 = —V22, 8O0 Vg = [ \/51 ]

10.6 Step 5: Principal Components

First principal component:

—4 —4 —5.657
-2 =2| ra —2.828
PCi=Xvi=|0 0 l\{?] =| o0
2 2 V2 2.828
4 4 5.657
Second principal component:
-4 —4 0
-2 =2 1 0
PCy=Xvo= |0 0 [_ﬁl} =10
2 2 V2 0
4 4 0
10.7 Step 6: Variance Explained
Total variance: A1 + Ao =20+ 0 = 20
Proportion by PC1: % = 100%
Proportion by PC2: 55 = 0%
10.8 General PCA Algorithm
1. Standardize the data: Center and scale variables
r_ T —

2. Compute covariance matrix: > = ﬁXTX

Calculate eigenvalues and eigenvectors: Solve ¥v = \v

- W

Sort components: Order by decreasing eigenvalues
5. Select components: Choose k& components that explain sufficient variance

6. Transform data: Y = XV}, where Vj contains first k eigenvectors
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10.9 Properties of PCA

10.10 Optimality Conditions
e Principal components are uncorrelated
e First PC has maximum variance
e PCs are orthogonal to each other

e Total variance is preserved: ) \; = trace(X)

10.11 Dimensionality Reduction

The cumulative proportion of variance explained by first k& components:

Zl'il Ai
Rk = =
?:1 Ai

Common criteria for choosing k:
e Kaiser criterion: \; > 1 (for standardized data)
e Cumulative variance > 70 — 90%

e Scree plot elbow

10.12 Applications

e Data visualization

e Noise reduction

e Feature extraction
e Collinearity removal

e Data compression

10.13 Limitations
e Linear assumptions
e Semnsitivity to scaling
e Interpretation challenges

e Qutlier sensitivity

11 Pearson’s Correlation Coefficient

11.1 Definition

Pearson’s product-moment correlation coefficient measures the linear relationship between two variables
X and Y. The formula is:

_ Z?:1(mi —Z)(yi — 7))
V(@i —2)2 Y (i — )2

Alternatively, it can be written as:

Xy

_ cov(X,Y)

SXSy

Xy

where sx and sy are the sample standard deviations.
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11.2 Interpretation
e r = +1: Perfect positive correlation
e 0 < r < +1: Positive correlation
e 7 = (: No linear correlation
e —1 < r < 0: Negative correlation

e r = —1: Perfect negative correlation

11.3 Covariance
11.4 Definition

Covariance measures how two variables change together:

LS (- D) —9)

i=1

cov(X,Y) =

n—1

11.5 Interpretation
e cov(X,Y) > 0: Positive relationship
e cov(X,Y) = 0: No linear relationship

e cov(X,Y) < 0: Negative relationship

11.6 Example Calculation
11.7 Given Data

Let’s consider two attributes X and Y with the following data:

Table 15: Example Dataset

Observation | X | Y
1 2 |5
2 4 17
3 6 | 10
4 8 | 12
5 10 | 15

11.8 Step 1: Calculate Means
2+4446+8+10 30

_ 5+ 74+104+12415 49
y= =~ =938
) 5
11.9 Step 2: Calculate Deviations and Products
11.10 Step 3: Calculate Covariance
1 & 50.0

cov(X,Y) =

n—1+4
=1

Y (@i—2)(yi—9) = — =125
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Table 16: Calculatio_n Table

i v |y | xi—T | yi—Y | (@—7)(y—9)
1 2 5 -4 -4.8 19.2
2 4 7 -2 -2.8 5.6
3 6 | 10 0 0.2 0.0
4 8 | 12 2 2.2 4.4
) 10 | 15 4 5.2 20.8
Sum 50.0

11.11 Step 4: Calculate Standard Deviations

S 7P _ [CAP (P e
SX\/ n—1 \/ 1

1 4 441 /4
:\/6+ At 6: ZOZ\/10%3.162

4

n—1 4
04 1 7.84 +0.04 + 4.84 + 27.04 -
\/230 178 +0£ +4.84+27.04 _ ?Z\/ﬁmi’)ﬂ&

sy — \/Z(yi -9)? _ \/(—4.8)2 +(—2.8)24+0.22 4222 + 522

11.12 Step 5: Calculate Pearson’s Correlation Coefficient

_eov(XY) 125 125 oo
SxSy 3162 x 3.962 1253

Xy

11.13 Interpretation of Results
11.14 Covariance Interpretation

cov(X,Y)=125>0

The positive covariance indicates that X and Y tend to increase together.

11.15 Correlation Interpretation

rxy =~ 0.998

This value is very close to +1, indicating a very strong positive linear relationship between X and Y.

11.16 Mathematical Properties

11.17 Properties of Pearson’s Correlation
e Symmetric: rxy = ryx
e Range: —1 <rxy <1
e Scale invariant: rox 4.y +a = sign(a)sign(c)rxy

e Measures linear relationship only

11.18 Properties of Covariance
e Symmetric: cov(X,Y) = cov(Y, X)
e cov(X,X) = var(X)
e Bilinear: cov(aX + b,¢Y +d) = ac- cov(X,Y)

e Dependent on scales of X and Y
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12 Relationship between Covariance and Correlation

The correlation coefficient is essentially a normalized version of covariance:

cov(X,Y) cov(X,Y)
Xy = =
var(X)var(Y) S5x Sy

While covariance indicates the direction of the relationship, correlation measures both the direction
and strength of the linear relationship.
12.1 Significance Testing
12.2 Hypothesis Test for Correlation
To test if the correlation is statistically significant:
e Hj:p=0 (No correlation)
e H;:p#0 (Significant correlation)
Test statistic:
. n—2
=r\/—7
1—r2

which follows a t-distribution with n — 2 degrees of freedom.

12.3 Limitations

e Only measures linear relationships
e Sensitive to outliers
e Does not imply causation

e Can be misleading with non-linear relationships

13  Chi-Square Test (x?)

A team of medical researchers wants to investigate if a new drug, ”CardioGuard,” is effective in preventing
heart attacks. To test this, they conduct a randomized controlled trial. They recruit 200 participants
who are at a high risk for cardiovascular disease.

e 100 participants are given the new drug, CardioGuard (the ” Treatment Group”).

e 100 participants are given a placebo, which looks identical to the drug but has no active ingredients
(the ”Control Group”).

After one year, the researchers record how many participants in each group experienced a heart attack.

13.1 The Research Question and Variables

Research Question: Is there a statistically significant association between taking CardioGuard and
the occurrence of a heart attack?
This involves two categorical variables:

1. Explanatory Variable: The group the participant was in (Treatment vs. Control).

2. Response Variable: The health outcome (Heart Attack vs. No Heart Attack).
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13.2 Step 1: State the Hypotheses
In any clinical trial, we start by formally stating the hypotheses.

1. The Null Hypothesis (Hp): This hypothesis assumes there is no relationship or association
between the two variables. It’s the "no effect” scenario.

e Hj: There is no association between taking CardioGuard and the occurrence of a heart attack.
The drug has no effect.

2. The Alternative Hypothesis (H, or H;): This is the hypothesis the researchers hope to find
evidence for. It states there is a relationship between the variables.

e H,: There is an association between taking CardioGuard and the occurrence of a heart attack.
The drug has an effect.

13.3 Step 2: Organize the Observed Data

The researchers collect the data at the end of the study and organize it into a contingency table. This
table shows the Observed Frequencies (O).

Group Had a Heart Attack | Had No Heart Attack Row Total
Treatment (CardioGuard) 10 90 100
Control (Placebo) 25 75 100
Column Total 35 165 200 (Grand Total)

Table 17: Observed Frequencies (O)

From this table, we can see that 10% of the treatment group had a heart attack, compared to 25%
of the control group. The Chi-Square test will tell us if this difference is statistically significant or if it
could have happened by random chance.

13.4 Step 3: Calculate the Expected Frequencies

Next, we calculate the Expected Frequencies (E) for each cell in the table. The expected frequency
is the number of participants we would have expected to see in each category if the null hypothesis were
true (i.e., if the drug had no effect).

The formula to calculate the expected frequency for any cell is:

(Row Total) x (Column Total)

E =
Grand Total

Let’s calculate this for each of the four cells:

e Expected (Treatment, Heart Attack): 1°9x3% = 17.5

(
e Expected (Treatment, No Heart Attack): % =82.5
(
(

e Expected (Control, Heart Attack): % =17.5

e Expected (Control, No Heart Attack): % =82.5

Group Had a Heart Attack | Had No Heart Attack
Treatment (CardioGuard) 17.5 82.5
Control (Placebo) 17.5 82.5

Table 18: Expected Frequencies (E)
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13.5 Step 4: Calculate the Chi-Square Statistic

Now we apply the Chi-Square formula, which measures the discrepancy between the observed and ex-

pected values.
The formula is:

O - E)?
=3 %
Where:

e x? is the Chi-Square statistic.
e > means to sum up the values for all cells.
e O is the Observed frequency.

e F is the Expected frequency.

Let’s calculate the term % for each cell:

1. Treatment, Heart Attack: (10171.2'5)2 = (_177“‘?2 = 5167'.255 =3.214

2. Treatment, No Heart Attack: (903425'5)2 = (;'25_)52 = 5862‘_255 = 0.682
3. Control, Heart Attack: (25171;'5)2 = (175); = 5167‘.255 =3.214

4. Control, No Heart Attack: (753.25'5)2 = (_872"2)2 = 5862‘?55 = 0.682

Finally, we sum these values to get the Chi-Square statistic:

x? = 3.214 + 0.682 + 3.214 + 0.682 = 7.792

Our calculated Chi-Square value is 7.792.

13.6 Step 5: Determine Degrees of Freedom (df) and Find the Critical Value

Degrees of Freedom (df) for a Chi-Square test of independence are calculated with the formula:

df = (number of rows — 1) x (number of columns — 1)

In our 2x2 table:
df =2-1)x2-1)=1x1=1

So, we have 1 degree of freedom.
Next, we choose a significance level (alpha, «), which is the threshold for statistical significance.

In medical research, a standard alpha level is 0.05.
We now look up the critical value from a Chi-Square distribution table using our df and «.

e For df =1 and o = 0.05, the critical value is 3.841.

13.7 Step 6: Compare and Conclude

The final step is to compare our calculated Chi-Square value to the critical value.
Decision Rule:

e If Calculated x2 > Critical x2, we reject the null hypothesis.

e If Calculated x? < Critical x2, we fail to reject the null hypothesis.

Our comparison:
7.792 > 3.841

Conclusion: Since our calculated Chi-Square value (7.792) is greater than the critical value (3.841),
we reject the null hypothesis (Hy).
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Table 19: Chi-Square (x?) Distribution Table

Probability in Upper Tail («)
df | 0,995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 0.001
1 | 0.000 0.000 0.001 0.004 0.016 2706 3.841 5.024 6.635 7.879 10.828
2 | 0.010 0.020 0.051 0.103 0.211 4.605 5991 7378 9.210 10.597 13.816
3 | 0072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838 16.266
4 | 0.207 0.297 0484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 18.467
5 | 0412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750 20.515
6 | 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548 22.458
7 | 0989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278 24.322
8 | 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955 26.125
9 | 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589 27.877
10 | 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188 29.588
11 | 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757 31.264
12 | 3.074 3.571 4404 5226 6.304 18.549 21.026 23.337 26.217 28.300 32.910
13 | 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819 34.528
14 | 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 36.123
15 | 4601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801 37.697

13.7.1 Medical Interpretation

There is a statistically significant association between taking CardioGuard and the reduced occurrence
of heart attacks. The results suggest that the new drug is effective in preventing heart attacks in this
high-risk population. The lower rate of heart attacks observed in the treatment group is unlikely to be

due to random chance.
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