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What is a Decision Tree?

A Decision Tree is a non-parametric, supervised learning algorithm that builds a model
in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets
while at the same time an associated decision tree is incrementally developed.

Key Components

Root Node: The top-most node, representing the entire dataset.
Internal Node: Represents a test on an attribute.
Branch: Represents the outcome of the test.
Leaf Node: A terminal node that holds a class label.

The Goal
To partition the data space recursively until the leaf nodes are as "pure" as possible (i.e.,
contain samples from only one class).

Department of Computer Science & Engineering Chapter 6: Classification: basic concepts and methods CSE 435:Data Mining 2 / 53



Visualizing a Decision Tree

Sample Data Set
Outlook Wind Decision
Sunny Weak Play
Sunny Strong Don’t Play
Rainy Weak Play
Rainy Strong Play
Sunny Weak Play
Sunny Strong Don’t Play
Rainy Weak Play

Resulting Tree
Outlook?

Wind? Play

Play Dont Play

Sunny Rainy

Weak Strong

How it Works
At each node, the algorithm selects the feature that maximizes the purity of resulting
child nodes.
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Splitting Criteria: How to Choose the Best Feature?
The "best" split is the one that maximizes the purity of the resulting child nodes. We
measure this using an impurity function.

Gini Impurity (used by CART)

Measures the probability of incorrectly
classifying a randomly chosen element.

Gini(D) = 1 −
k∑

i=1

(pi)
2

where pi is the probability of class i at node D.

Gini = 0: Node is pure (all one class).

Gini = 0.5: Node is maximally impure (for
k = 2).

Entropy (used by ID3, C4.5)

Measures the level of disorder or uncertainty in
the node.

H(D) = −
k∑

i=1

pi log2(pi)

where pi is the probability of class i at node D.

H = 0: Node is pure.

H = 1: Node is maximally impure (for
k = 2).

Department of Computer Science & Engineering Chapter 6: Classification: basic concepts and methods CSE 435:Data Mining 4 / 53



Splitting Criteria: Information Gain
Algorithms like ID3 and C4.5 use Information Gain (IG) to select the best feature to split
on.

Information Gain Formula

Expected information (entropy) needed to
classify a tuple in D:

Info(D) = −
m∑

i=1

pi log2(pi)

Information needed (after using A to split D
into v partitions) to classify D:

InfoA(D) =
v∑

j=1

|Dj |
|D|

× Info(Dj)

Information gained by branching on
attribute A:

Gain(A) = Info(D)− InfoA(D)

Gain ratio: Overcomes the problem (as a
normalization to information gain)

SplitInfoA(D) = −
v∑

j=1

|Dj |
|D|

× log2(
|Dj |
|D|

)
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Step-by-Step: Finding the Root Node

Goal: Find which attribute ("Weather" or "Temp") is the best to split the data on first. We
use Information Gain to measure this.

Mini-Dataset (D):
Weather Temp Play?

Sunny Hot No
Sunny Mild Yes
Rainy Hot No
Rainy Mild Yes
Sunny Hot No

Overall Data (D):
5 samples total
2 Play = Yes
3 Play = No

This is our starting point, or "Root Node". It’s impure
because it contains a mix of "Yes" and "No"
outcomes.
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Step 1: Calculate Parent Entropy Info(D)

We first measure the total uncertainty of the entire dataset.
Root Node Visualization:

Root Node (D)

5 Samples Total
2 Yes / 3 No

Calculation:
pYes = 2/5 = 0.4
pNo = 3/5 = 0.6

Info(D) = −
∑

pi log2(pi)

Info(D) = − (0.4 log2(0.4) + 0.6 log2(0.6))

Info(D) = 0.971

Starting Entropy

Our starting uncertainty is 0.971. The goal of a split is to reduce this number as much as
possible.
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Step 2: Test Split for "Weather" (1/2)

Let’s see what happens if we split the data by "Weather".

Root Node (D)
H = 0.971

DSunny

3 Samples
1 Yes / 2 No

Weather = Sunny

DRainy

2 Samples
1 Yes / 1 No

Weather = Rainy

This split creates two new child nodes, neither of which is pure. Now, we must calculate
their entropy.
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Step 2: Calculate Gain for "Weather" (2/2)

Parent Entropy: Info(D) = 0.971
Child Entropies:

DSunny : (1 Yes, 2 No)

Info(DS) = −
(

1
3

log2
1
3
+

2
3

log2
2
3

)
= 0.918

DRainy : (1 Yes, 1 No)

Info(DR) = −
(

1
2

log2
1
2
+

1
2

log2
1
2

)
= 1.0

Weighted Average Entropy:

InfoWeather(D) =
v∑

j=1

|Dj |
|D|

× Info(Dj)

=

[
3
5

Info(DS) +
2
5

Info(DR)

]
= [0.6(0.918) + 0.4(1.0)] = 0.951

Information Gain (Weather):

Gain(Weather) = Info(D)− InfoWeather(D)

Gain(Weather) = 0.971 − 0.951 = 0.02
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Step 3: Test Split for "Temp" (1/2)

Now let’s try splitting by "Temp" instead.

Root Node (D)
H = 0.971

DHot (Pure!)

3 Samples
0 Yes / 3 No

Temp = Hot

DMild (Pure!)

2 Samples
2 Yes / 0 No

Temp = Mild

This split looks much better! Both child nodes are perfectly pure.
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Step 3: Calculate Gain for "Temp" (2/2)

Parent Entropy: H(D) = 0.971
Child Entropies:

DHot : (0 Yes, 3 No)

H(DH) = 0 (Pure!)

DMild : (2 Yes, 0 No)

Info(DM) = 0 (Pure!)

Weighted Average Entropy:

InfoTemp(D) =
v∑

j=1

|Dj |
|D|

× Info(Dj)

=

[
3
5
× Info(DH) +

2
5
× Info(DM)

]
= [0.6(0) + 0.4(0)] = 0

Information Gain (Temp):

Gain(Temp) = Info(D)− InfoTemp(D)

Gain(Temp) = 0.971 − 0 = 0.971
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Step 4: Compare and Conclude

We compare the Information Gain from
both potential splits.

Conclusion

Gain(D,Temp) = 0.971
Gain(D,Weather) = 0.02

Since 0.971 > 0.02, the algorithm
chooses "Temp" as the root node.

Final Tree Structure:

Temp?

Play = No
(3/3 No)

Hot

Play = Yes
(2/2 Yes)

Mild
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Step-by-Step: Finding the Root Node

Goal: Find which attribute ("Weather" or "Temp") is the best to split the data on first. We
use Gini Index to measure this.

Mini-Dataset (D):
Weather Temp Play?

Sunny Hot No
Sunny Mild Yes
Rainy Hot No
Rainy Mild Yes
Sunny Hot No

Overall Data (D):
5 samples total
2 Play = Yes
3 Play = No

This is our starting point, or "Root Node". It’s impure
because it contains a mix of "Yes" and "No"
outcomes.
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Step 1: Calculate Parent Gini Index Gini(D)

We first measure the total impurity of the entire dataset.
Root Node Visualization:

Root Node (D)

5 Samples Total
2 Yes / 3 No

Calculation:
pYes = 2/5 = 0.4
pNo = 3/5 = 0.6

Gini(D) = 1 −
∑

p2
i

Gini(D) = 1 −
(
(0.4)2 + (0.6)2

)
Gini(D) = 1 − (0.16 + 0.36) = 1 − 0.52

Gini(D) = 0.48

Starting Impurity

Our starting impurity is 0.48. The goal of a split is to reduce this number as much as
possible. (0 = Pure).
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Step 2: Calculate Gini Gain for "Weather"

Parent Gini: Gini(D) = 0.48
Child Gini Indices:

DSunny : (1 Yes, 2 No)

Gini(DS) = 1 −

((
1
3

)2

+

(
2
3

)2
)

= 1 −
(

1
9
+

4
9

)
= 1 − 5

9
= 0.444

DRainy : (1 Yes, 1 No)

Gini(DR) = 1 −

((
1
2

)2

+

(
1
2

)2
)

= 1 − (0.25 + 0.25) = 0.5

Weighted Average Gini:

GiniWeather(D) =
∑ |Dj |

|D|
× Gini(Dj)

=

[
3
5

Gini(DS) +
2
5

Gini(DR)

]
= [0.6(0.444) + 0.4(0.5)]

= 0.266 + 0.2 = 0.466

Gini Gain (Weather):

∆Gini(Weather) = Gini(D)− GiniWeather(D)

∆Gini(Weather) = 0.48 − 0.466 = 0.014
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Step 3: Calculate Gini Gain for "Temp"

Parent Gini: Gini(D) = 0.48
Child Gini Indices:

DHot : (0 Yes, 3 No)

Gini(DH) = 1 −
(

02 + 12
)
= 0

DMild : (2 Yes, 0 No)

Gini(DM) = 1 −
(

12 + 02
)
= 0

Weighted Average Gini:

GiniTemp(D) =
∑ |Dj |

|D|
× Gini(Dj)

=

[
3
5

Gini(DH) +
2
5

Gini(DM)

]
= [0.6(0) + 0.4(0)] = 0

Gini Gain (Temp):
∆Gini(Temp) = Gini(D)− GiniTemp(D)

∆Gini(Temp) = 0.48 − 0 = 0.48
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Step 4: Compare and Conclude

We compare the Gini Gain from both
potential splits.

Conclusion

∆Gini(D,Temp) = 0.48
∆Gini(D,Weather) = 0.014

Since 0.48 > 0.014, the algorithm
chooses "Temp" as the root node.

Final Tree Structure:

Temp?

Play = No
(3/3 No)

Hot

Play = Yes
(2/2 Yes)

Mild
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How to Handle Continuous-Valued Attributes?

The Problem
Decision trees naturally split on categorical data (e.g., Weather = Sunny, Rainy, or
Overcast).

But what about continuous data like Temperature (e.g., 65.2, 78.1, 85.5...)?
We cannot create a unique branch for every single value.
This would "memorize" the data (overfitting) and fail to generalize.

The Solution: Discretization
We must convert the continuous attribute into discrete intervals. The algorithm must find
the best split point (e.g., ‘Temp <= 72.5‘) to divide the data.
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The "Best Split" Algorithm (Supervised)

This is the method used internally by algorithms like CART and C4.5.
1 Sort: Take all unique values of the attribute from the dataset and sort them in

ascending order.
2 Find Candidates: Create a set of candidate split points. The most common method

is to use the midpoints between all adjacent sorted values.
3 Test Splits: For each candidate split point S:

Divide the data into two sets: (Attribute ≤ S) and (Attribute > S).
Calculate the impurity (Gini or Entropy) of this binary split.

4 Select Best: Choose the split point S that maximizes the Gain (or, equivalently,
minimizes the weighted average impurity).

Result
The node becomes a binary question, e.g., "Is Temperature ≤ 72.5?".
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Alternative: Discretize Continuous Values First

Before running the algorithm, you can "bin" continuous data to turn it into a categorical
attribute.

Method 1: Equal Width Binning

Divide the total range (max - min) into k
equal-sized bins. Example (k=3):

Range: 65 to 90 (25 units)
Bin Size: 25 / 3 ≈ 8.33
Bins: [65, 73.3), [73.3, 81.6), [81.6, 90]
Labels: "Low", "Medium", "High"

Method 2: Equal Frequency Binning

Divide the sorted data into k bins with
(roughly) the same number of samples.
Example (k=3):

Data: {65, 70, 75, 80, 85, 90}
6 samples / 3 bins = 2 samples/bin
Bins: {65, 70}, {75, 80}, {85, 90}
Labels: "Bin 1", "Bin 2", "Bin 3"

Binning is (unsupervised) data pre-processing. The "Best Split" method is (supervised) and built directly
into the tree algorithm. The "Best Split" method usually performs better because it uses the class labels
(Yes/No) to find the most meaningful split.
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Example (1/4): Using the "Best Split" Method

We will now use the supervised "Best Split" method.

Mini-Dataset (D):

Temp Play?

65 No
70 No
75 Yes
80 Yes
85 Yes
90 No

Overall Data (D):

6 samples total

3 Play = Yes

3 Play = No

Parent Gini Calculation:

Gini(D) = 1 −
∑

p2
i

= 1 −

((
3
6

)2

+

(
3
6

)2
)

= 1 − (0.52 + 0.52)

= 1 − (0.25 + 0.25) = 0.5
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Example (2/4): Find Split Candidates

Step 1: Sort unique "Temp" values:

{65, 70, 75, 80, 85, 90}

Step 2: Find midpoints between adjacent values:
(65 + 70)/2 = 67.5
(70 + 75)/2 = 72.5
(75 + 80)/2 = 77.5
(80 + 85)/2 = 82.5
(85 + 90)/2 = 87.5

Candidate Splits

We now have 5 binary splits to test:
(Temp ≤ 67.5), (Temp ≤ 72.5), (Temp ≤ 77.5), (Temp ≤ 82.5), (Temp ≤ 87.5)
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Example (3/4): Test Each Split
We must calculate the Gini Gain for all 5 candidates. Let’s try two of them:
Test 1: Split at Temp ≤ 72.5
Left (≤ 72.5): {65(N), 70(N)}

0 Yes, 2 No → Pure!

Gini = 0.0

Right (> 72.5): {75(Y), 80(Y), 85(Y), 90(N)}

3 Yes, 1 No

Gini = 1 − (( 3
4 )

2 + ( 1
4 )

2) = 0.375

Weighted Gini:

=

(
2
6

)
(0.0) +

(
4
6

)
(0.375) = 0.25

Gini Gain: 0.5 − 0.25 = 0.25

Test 2: Split at Temp ≤ 87.5
Left (≤ 87.5): {65(N), 70(N), 75(Y), 80(Y), 85(Y)}

3 Yes, 2 No

Gini = 1 − (( 3
5 )

2 + ( 2
5 )

2) = 0.48

Right (> 87.5): {90(N)}

0 Yes, 1 No → Pure!

Gini = 0.0

Weighted Gini:

=

(
5
6

)
(0.48) +

(
1
6

)
(0.0) = 0.4

Gini Gain: 0.5 − 0.4 = 0.1
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Example (4/4): Select the Best Split

After testing all 5 candidate splits, we get the following results:

Split Point Weighted Gini Gini Gain (0.5 − Gini)

Temp ≤ 67.5 0.400 0.100
Temp ≤ 72.5 0.250 0.250 (Max!)
Temp ≤ 77.5 0.333 0.167
Temp ≤ 82.5 0.333 0.167
Temp ≤ 87.5 0.400 0.100

Conclusion
The split at Temp ≤ 72.5 gives the highest Gini Gain. This becomes the question for our root node.

An Important Note
The attribute "Temperature" is not "used up". The same attribute can be used again for a new split (with a
different value) in a child node. ( E.g., the branch for Temp > 72.5 could be split again at Temp ≤ 87.5 )
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The Problem: Overfitting in Decision Trees

What is Overfitting?

A model overfits when it learns the training data too closely capturing both genuine
patterns and random noise. As a result, it performs well on training data but poorly on
unseen data.

Typical Signs:
Very high training accuracy
Poor test accuracy
Low bias but very high variance

In Decision Trees:
Grows to full depth, creating overly specific
branches
Fits every training example, including outliers

Error vs. Model Complexity

Model Complexity

Error

Training Error

Validation Error

Sweet Spot

Training error keeps decreasing, while validation
error starts increasing after a point.
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Visualizing Overfitting: Decision Boundaries

Smooth, general decision boundary
Correctly classifies most points
Ignores minor noise better generalization

Very complex, fragmented boundary
Fits outliers and noise perfectly
Fails badly on unseen data
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The Solution: Pruning the Tree

Concept

Pruning simplifies a decision tree by removing branches that add little or no predictive
power. It helps balance model complexity and accuracy.

Pre-Pruning (Early Stopping)

Stop early before overfitting
occurs.

Post-Pruning (Cost-Complexity)

Grow fully then prune back.

Goal: Find the simplest tree with the best generalization performance.
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Pre-Pruning (Early Stopping)

How It Works
Stop tree growth when any stopping rule (hyperparameter) is met:

max_depth = k Stop when tree depth reaches k .
min_samples_leaf = n Each leaf must contain at least n samples.
min_impurity_decrease = x Split only if impurity decreases by ≥ x .

Pros

Simple and efficient
Faster training time

Cons

Can stop too early
Might miss beneficial deeper splits
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Post-Pruning (Cost-Complexity)

How It Works
First, grow the full tree; then find the optimal subtree T that minimizes:

Rα(T ) = R(T ) + α|T |
R(T ) Total misclassification error (training loss).

|T | Number of leaf nodes (tree size / complexity).

α Complexity penalty controlling pruning aggressiveness.

Process: Generate a sequence of subtrees for different α values and choose the best via
cross-validation.
Pros

Achieves better biasvariance trade-off

Typically yields higher test accuracy

Cons

Computationally expensive

Requires full tree + cross-validation
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Why Do We Need Evaluation?

The Goal
The goal of a classifier is to generalize to new, unseen data. High accuracy on the data it
was trained on is meaningless.

Warning: Never Test on Your Training Set!

A model will "memorize" the training data (overfitting). This leads to a 100% (or very high)
accuracy on training data, but it will fail miserably on new data.

The Solution
Always assess a classifier’s accuracy using a separate test set (or validation set) of
class-labeled tuples that the model has never seen before.
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The Foundation: The Confusion Matrix

For a binary classification problem (e.g., "Yes" or "No"), the confusion matrix tabulates a
model’s performance.

Predicted Class

Class = Yes Class = No

Actual Class = Yes True Positive (TP) False Negative (FN)

Class Class = No False Positive (FP) True Negative (TN)

TP: Correctly predicted "Yes".
FN: Incorrectly predicted "No" (it was "Yes"). (Type II Error)
FP: Incorrectly predicted "Yes" (it was "No"). (Type I Error)
TN: Correctly predicted "No".
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Metric 1: Accuracy

How can we measure accuracy?
Accuracy is the percent of all predictions that were correct.

Accuracy =
TP + TN

TP + TN + FP + FN

Example
A model classifies 100 tumors (60 malignant, 40 benign):

Pred: Malignant Pred: Benign
Actual Malignant TP = 50 FN = 10
Actual Benign FP = 5 TN = 35

Accuracy =
50 + 35

50 + 10 + 5 + 35
=

85
100

= 85%
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The Pitfall: Imbalanced Data

Accuracy can be very misleading.

Consider a dataset of 1000 people, where 990 are healthy and 10 have a rare disease.

Let’s build a "dumb" classifier that always predicts "Healthy".

"Dumb" Model Confusion Matrix

Pred: Sick Pred: Healthy
Actual Sick TP = 0 FN = 10
Actual Healthy FP = 0 TN = 990

Accuracy =
0 + 990

0 + 10 + 0 + 990
=

990
1000

= 99%

This model has 99% accuracy but is completely useless, as it fails to identify a single sick patient.
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Other Metrics to Consider (1/2)

Precision (Positive Predictive Value)
Of all the times the model predicted "Yes", what percentage was correct?

Precision =
TP

TP + FP
Use when: The cost of a False Positive is high. (e.g., spam detection: you don’t want to mark a real email
as spam).

Recall (Sensitivity / True Positive Rate)
Of all the actual "Yes" cases, what percentage did the model find?

Recall =
TP

TP + FN

Use when: The cost of a False Negative is high. (e.g., medical diagnosis: you don’t want to miss a sick
patient).
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Other Metrics to Consider (2/2)

F1-Score (Harmonic Mean)
A single score that balances both Precision and Recall. It is the harmonic mean, which punishes extreme
(very low) values.

F1-Score = 2 × Precision × Recall
Precision + Recall

This is often the best "single number" metric for imbalanced classes.

Specificity (True Negative Rate)
Of all the actual "No" cases, what percentage did the model correctly identify?

Specificity =
TN

TN + FP
This is the "Recall" for the negative class.
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Methods for Estimating a Classifier’s Accuracy

How do we split our data to get a reliable estimate of performance?
1 The Holdout Method
2 Cross-Validation
3 The Bootstrap

All these methods are ways to generate a test set, which is then used to build the
confusion matrix and calculate the metrics.
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Estimator 1: The Holdout Method

The simplest method.
1 Split: Divide the initial labeled data into two disjoint sets:

Training Set (e.g., 70-80% of data)
Test Set (e.g., 20-30% of data)

2 Train: Build the model using only the training set.
3 Test: Evaluate the model on the test set to get a performance estimate.

Training Data (70%) Test Data (30%)

Problems

Wastes data: We don’t get to train on 30% of our data.
High Variance: The estimate depends heavily on which 30% ended up in the test
set. A "lucky" or "unlucky" split can give a misleadingly high or low score.
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Estimator 2: k-Fold Cross-Validation

The standard solution to the Holdout method’s problems.

Process (e.g., 5-Fold CV)

1 Split: Divide the data into k (e.g., 5) equal
"folds".

2 Iterate: Run k experiments:
Fold 1: Test on F 1, Train on F 2, 3, 4, 5.
... ... ...
Fold 5: Test on F 5, Train on F 1, 2, 3, 4.

3 Average: The final performance is the
average of the 5 individual scores.

Test Train Train Train Train

Train Test Train Train Train

Train Train Test Train Train

Train Train Train Test Train

Train Train Train Train Test

Advantages
Much more robust estimate. Mitigates the "unlucky split" problem. Uses all data for both training and testing.
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Estimator 3: The Bootstrap

Process ( Used when the dataset is small)

1 Sample: Given a dataset D of n tuples, create a new "bootstrap sample" Di by sampling n tuples from
D with replacement.

2 Split: Di becomes the training set. The tuples from D that were not selected for Di form the test set (the
"out-of-bag" samples).

3 Train & Test: Train the model on Di and test it on the out-of-bag samples.

4 Repeat: Repeat this process many times (e.g., b = 200 times).

5 Average: The final accuracy is the average of all b test accuracies.

Example of Bootstrap Sampling (n=10)
Original D: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Sample D1: {2, 1, 7, 10, 2, 5, 9, 1, 6, 5} → Train
Test Set 1: {3, 4, 8} → Test
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Comparing Classifiers (1/2): ROC Curves

Receiver Operating Characteristic (ROC) Curve

Many classifiers don’t just output "Yes" or "No". They output a probability (e.g., 0.85). We
then use a threshold (e.g., > 0.5) to make the decision.
An ROC curve visualizes a classifier’s performance across all possible thresholds.

ROC Axes:
Y-Axis: True Positive Rate
(Recall)

TPR =
TP

TP + FN

X-Axis: False Positive Rate

FPR =
FP

FP + TN
FPR

TPR

0.0
1.0

1.0

Random (AUC=0.5)

Good Model

Perfect Model
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Comparing Classifiers (2/2): AUC

Area Under the Curve (AUC)

It’s hard to compare two ROC curves just by looking. The Area Under the Curve (AUC)
converts the entire curve into a single number.

Interpreting AUC:
AUC = 1.0: Perfect classifier.
AUC = 0.5: Random guessing.
AUC < 0.5: Worse than random (model is backwards).

Comparison
You have two models:

Model A (AUC = 0.92)

Model B (AUC = 0.81)

Conclusion: Model A is better at distinguishing between "Yes" and "No".
FPR

TPR

0.0
1.0

1.0

Model A (AUC=0.92)

Model B (AUC=0.81)

Random (AUC=0.5)
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Summary of Evaluation

Never test on training data. Always use a separate test set.
Accuracy is not enough. It is misleading for imbalanced datasets.
Use the right metric.

Use Precision if False Positives are "expensive".
Use Recall if False Negatives are "expensive".
Use F1-Score for a balance.

Use the right estimation method.
Holdout is simple but has high variance.
k-Fold Cross-Validation is the industry standard.
Bootstrap is good for very small datasets.

Use ROC/AUC to compare models. It provides a comprehensive view of a model’s
performance across all thresholds.
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What are Ensemble Methods?

The Core Idea: "Wisdom of the Crowd"
Ensemble methods combine the predictions of multiple machine learning models (called
"weak learners") to create a single, more robust, and accurate model (a "strong learner").

Why use them?
Reduce Variance: Less sensitive to the
specific training data. (e.g., Bagging)
Reduce Bias: Correct for the errors of
previous models. (e.g., Boosting)
Improve Performance: By blending the
strengths of different models. (e.g.,
Stacking)

Model 1 → Prediction 1
Model 2 → Prediction 2
Model 3 → Prediction 3

⇓
Final Ensemble Prediction
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Bagging (Bootstrap Aggregating)

How it Works: Parallel Training

The goal is to reduce variance by averaging out the noise.

1 Bootstrap: Create N random subsets of the training data (sampling with
replacement).

2 Train: Train N models (e.g., Decision Trees) in parallel, one on each subset.
3 Aggregate: Combine the results.

Classification: Majority Voting
Regression: Averaging

Key Example: Random Forest

A Random Forest is a Bagging method using Decision Trees. It adds one more layer of
randomness: at each split, the tree only considers a random subset of features.
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Boosting

How it Works: Sequential Training

The goal is to reduce bias by learning from mistakes.

1 Train a simple model (Learner 1) on the data.
2 Identify misclassified samples. Increase their "weight" or importance.
3 Train a new model (Learner 2) that is forced to focus on the high-weight (difficult)

samples.
4 Repeat, with each new learner correcting the errors of the previous ones.
5 Aggregate: Combine all learners using a weighted vote (better-performing learners

get a higher say).

Key Examples

AdaBoost (Adaptive Boosting), Gradient Boosting (GBM), XGBoost

Department of Computer Science & Engineering Chapter 6: Classification: basic concepts and methods CSE 435:Data Mining 45 / 53



Stacking (Stacked Generalization)

How it Works: Learning to Combine

The goal is to blend different models to capture different patterns in the data.

Level 0: Base Learners
Train several different models (e.g., SVM, Random Forest, k -NN) on the training data.
Generate their predictions for the data (often using k-fold cross-validation to prevent
data leakage).

Level 1: Meta-Learner
The predictions from Level 0 are now used as input features for a new, final model.
This "meta-learner" (e.g., Logistic Regression) learns the best way to combine the
base learner predictions.

(Data → [SVM, RF, k -NN]) → (Predictions) → [Logistic Regression] → Final Output
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Ensemble Comparison

Feature Bagging Boosting Stacking

Model Building Parallel Sequential Parallel, then Sequential
Main Goal Reduce Variance Reduce Bias Improve Predictions
Model Type Homogeneous Homogeneous Heterogeneous
Key Idea Averaging Weighted Voting Learning to Combine
Example Random Forest XGBoost Custom Blends
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The Challenge: Imbalanced Data

What is it?
A classification dataset where one class is
much more frequent than the other.

Majority Class: The common one.
Minority Class: The rare one.

Examples

Fraud Detection (99.9% Not Fraud)
Medical Diagnosis (98% Healthy)
Ad Click-Through (99.5% No Click)

The "Accuracy Paradox"

Imagine a 99% / 1% split.
A "dumb" model that always
predicts the majority class is 99%
accurate.
...but it is completely useless, as it
never finds the minority class
(which is usually the one we care
about!)

Solution: Stop using accuracy. Focus on
metrics like Precision, Recall, F1-Score, and
AUC-ROC.
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Strategy 1: Data-Level Solutions (Resampling)
Undersampling

What: Randomly remove samples from the
majority class.

Pro: Reduces dataset size, speeds up
training.

Con: Can lose important information and
patterns from the majority class.

Oversampling

What: Randomly duplicate samples from the
minority class.

Pro: No information is lost.

Con: Can lead to overfitting, as the model
sees the same exact samples multiple times.

A Better Way: SMOTE
SMOTE (Synthetic Minority Over-sampling Technique)

Instead of duplicating, it creates new synthetic samples.

It selects a minority sample, finds its neighbors, and creates a new point on the line segment between
them.

This provides new, plausible data and avoids simple overfitting.
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Strategy 2 : Algorithm Solutions

Algorithm-Level (Cost-Sensitive Learning)

What: Modify the model’s loss function to penalize misclassifying the minority class
more heavily.
Example: Tell the model that a "False Negative" (missing a fraud case) is 100×
worse than a "False Positive" (flagging a good transaction).
Many models have a class_weight=’balanced’ parameter that does this
automatically.
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Strategy 3: Ensemble Solutions

Ensemble-Level Solutions

Balanced Bagging (e.g., Balanced Random Forest):
Each "bag" (bootstrap sample) is created by undersampling the majority class.
The final ensemble is trained on many different, balanced datasets.
Boosting (e.g., AdaBoost):
Boosting algorithms naturally increase the weight of misclassified (hard) samples.
The minority class is often "hard," so the model automatically learns to focus on it.
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Summary of Key Points

Decision Trees use impurity measures (Entropy, Gini).
Evaluation uses metrics beyond accuracy.
Ensemble methods improve robustness.
Imbalanced data needs resampling or cost-sensitive methods.
ROC/AUC provides a fair comparison between models.
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