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Data Objects and Attributes

What is a Data Object?
A data object represents an entity. In a dataset, these
are the rows.

Also known as: samples, instances, data points,
tuples.
Examples: A customer in a sales database, a
patient in medical records.

What is an Attribute?
An attribute is a feature or characteristic of a data
object. In a dataset, these are the columns.

Also known as: dimensions, features, variables.
Examples: customer_ID, age, product_price.

Customer Dataset
ID age price segment active
C001 22 799 Student 0
C002 35 1299 Regular 1
C003 29 499 Budget 0
C004 41 2199 Premium 0
C005 54 899 Regular 1
C006 31 1499 Premium 0
. . . . .
. . . . .
. . . . .

ID: nominal (identifier)
age, price: numeric (ratio)
segment: nominal
active: binary (asymmetric)
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Attribute Types — Qualitative (Categorical)

Qualitative (Categorical)
Nominal: Distinct symbols, no order.

Ex: eye_color, zip_codes.
Ordinal: Values have rank/sequence.

Ex: drink_size (small, medium, large).
Binary: Two states (0/1).

Symmetric: both outcomes equally important.
Asymmetric: one outcome more important (e.g.,
positive test).

Nominal

red blue green orange

Ordinal

Poor Fair Good Very Good Excellent

Binary

0 1 0

(symmetric/asymmetric)
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Attribute Types — Quantitative (Numeric)

Quantitative (Numeric)
Interval-Scaled: Ordered values,
meaningful differences, no true zero.

Ex: Temperature in Celsius, calendar dates.
Ratio-Scaled: True zero; ratios are
meaningful.

Ex: length, weight, salary.

Numeric (distribution view)
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Discrete vs. Continuous Attributes

Discrete

Takes values from a countable set (often integers).

Examples: num_items_bought, clicks, defects.

Described by a PMF p(x) = Pr(X = x) with
∑

x p(x) = 1.

Typical summaries: frequency table, mode, entropy.

Continuous

Takes values from an uncountable interval (real numbers).

Examples: temperature, weight, time.

Described by a PDF f (x) ≥ 0 with
∫∞
−∞ f (x) dx = 1.

Pr(a ≤ X ≤ b) =
∫ b

a f (x) dx ; single points have prob. 0.
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Measuring the Central Tendency — Mean

Mean (Average)
The sum of all values divided by the count of values. Sensitive to outliers.

x̄ =
1
n

n∑
i=1

xi , µ =
1
N

N∑
i=1

xi

Sample mean: arithmetic average of n values.
Population mean: average over all N population units.
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Measuring the Central Tendency — Median

Median
The middle value of a sorted dataset. Robust to outliers.

If n is odd: the n+1
2 -th value; if n is even: average of the two middle values.

Median for grouped data:

x̃ = L +

( n
2 − cf

fm

)
w

L : lower boundary of the median class
n : total frequency
cf : cumulative freq. before median class
fm : freq. of median class
w : class width
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Measuring the Central Tendency — Mode
Mode
The value that appears most frequently. A dataset can be unimodal, bimodal, or trimodal.

Grouped data (modal class interpolation): estimate the peak inside the modal class.
Useful empirical relation (for moderately skewed data):

mean − mode ≈ 3 (mean − median)

Mode for grouped data:

m̂ = L +

(
d1

d1 + d2

)
w

L : lower boundary of the modal class
w : class width
fm : freq. of modal class
fm−1, fm+1 : freqs. of adjacent classes
d1 = fm − fm−1, d2 = fm − fm+1
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Descriptive Statistics: Central Tendency (Salaries Example)
Dataset (thousands): {30, 35, 40, 40, 55, 60, 150}
Mean x̄ = 410

7 ≈ 58.57; Median = 40; Mode = 40.

40 60 80 100 120 140 160
0

1

2

Salary (thousands)

Fr
eq

ue
nc

y
Salaries Histogram

Histogram
Mean ≈ 58.57

Median/Mode = 40
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Measures of Data Dispersion

Range and Five-Number Summary
A summary of the distribution: Minimum, Q1, Median (Q2), Q3, Maximum.

Interquartile Range (IQR)
The range of the middle 50% of the data. Robust to outliers.

IQR = Q3 − Q1

Department of Computer Science & Engineering CSE 435:Data Mining Fall 2025 Basic Statistical Descriptions of Data Slide 11/37



Measures of Data Dispersion

Variance (σ2) and Standard Deviation (σ)
The variance is the average squared deviation from the mean; the standard deviation is its
square root.

s2︸︷︷︸
sample variance

=
1

n − 1

n∑
i=1

(
xi − x̄

)2
, s︸︷︷︸

sample std. dev.

=
√

s2 .

σ2︸︷︷︸
population variance

=
1
N

N∑
i=1

(
xi − µ

)2
, σ︸︷︷︸

population std. dev.

=
√
σ2 .

Computational (shortcut) forms:

s2 = 1
n − 1

( n∑
i=1

x2
i − n x̄ 2

)
, σ2 =

1
N

( N∑
i=1

x2
i − N µ2

)
.
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Dispersion: Worked Example (Salaries)

Dataset (thousands): {30, 35, 40, 40, 55, 60, 150}
Five-Number Summary

Min = 30
Q1 (25th pct) = 35
Median (Q2) = 40
Q3 (75th pct) = 60
Max = 150

Interquartile Range

IQR = Q3 − Q1 = 60 − 35 = 25

Mean x̄ =
410
7 ≈ 58.57, n = 7.

Variance and Standard Deviation

s2 =
∑

(xi − x̄)2
n − 1

≈ 816.5 + 555.5 + 344.8 + 344.8 + 12.7 + 2.0 + 8359.2
6

≈ 1739.25,

s =
√

1739.25 ≈ 41.7 .

Note: The outlier 150 inflates s (high variability).
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Symmetric vs. Skewed Data
Median, Mean, Mode

Symmetric: Mean = Median = Mode.
Positively skewed (right tail): Mode <
Median < Mean.
Negatively skewed (left tail): Mean <
Median < Mode.

positively skewed

Mode
Median
Mean

symmetric

negatively skewed
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Correlation of Data
Correlation measures the linear relationship between
two variables.

Positive Correlation: As one variable
increases, the other tends to increase.
(r ≈ +1)
Negative Correlation: As one increases, the
other decreases. (r ≈ −1)
No Correlation: No clear linear relationship.
(r ≈ 0)

Negative Correlation

Positive Correlation

No Correlation
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Boxplot Analysis

What a boxplot shows

Five-number summary:
min, Q1, median (Q2), Q3, max.
Box spans the interquartile range:
IQR = Q3 − Q1.
Whiskers: extend to the most extreme points
within [Q1 − 1.5 IQR, Q3 + 1.5 IQR ].
Outliers: observations outside the whisker range
(plotted as points).
Quickly compares center (median), spread
(IQR), and skewness/outliers across groups.

Q1
(25th Percentile)

Median Q3
(75th Percentile)

Interquartile Range (IQR)

“Minimum”
(Q1 - 1.5*IQR)

“Maximum”
(Q3 + 1.5*IQR)

Outliers Outliers
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Properties of the Normal Distribution

Key Characteristics
The curve is bell-shaped and symmetric about the
mean (µ).
The mean, median, and mode are all equal and
located at the center.
The total area under the curve is equal to 1 (or
100%).
The curve is described by its mean (µ) and
standard deviation (σ).

Probability Density Function (PDF) The formula

that defines the curve is: f (x) = 1
σ
√
2π e−

1
2

(
x−µ
σ

)2

µ
−
3σ

µ
−
2σ

µ
−
σ

µ
+
σ

µ
+
2σ

µ
+
3σ

68%

95%

99.7% within ±3σ

x

f (x)
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Why Visualize Data?

From Numbers to Insights
Data visualization turns raw data into charts and graphics so patterns, trends, and outliers
jump out quickly.

Summarize a dataset at a glance.

Reveal patterns/trends that are hard to see in tables.

Spot outliers and data quality issues.

Communicate findings clearly to others.

“The greatest value of a picture is when it forces us to notice what we never expected to see.” — John
Tukey
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Visualizing Distributions: The Histogram

Use Case
Distribution of a single continuous
variable.

Questions
Symmetry? Skew?
Unimodal/bimodal?

Examples
Exam scores, ages, temperatures.

62 66.1270.2574.37 78.5 82.6286.7590.87
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Comparing Categories: The Bar Chart

Use Case
Compare a numeric value across
discrete categories.

Examples
Sales by quarter, population by
country, feature importance.
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Exploring Relationships: The Scatter Plot

Use Case
Relationship between two
continuous variables.

Examples
Ads spend vs. revenue; height vs.
weight; temperature vs. sales.
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Showing Proportions: The Pie Chart

Use Case
To show the proportional composition
or percentage share of a whole.
It’s most effective with a small number of
categories (usually 2-6).

Examples
Market share of competing companies.
Breakdown of a budget by department.
Survey responses (e.g., ”Agree”,
”Disagree”, ”Neutral”).

Federal Budget
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Similarity and Dissimilarity: The Basics

Core Concepts
Dissimilarity (or distance) measures how different two data objects are. A low value
means they are alike.
Similarity measures how alike two data objects are. A high value means they are alike.

Relationship
Often, they are inverse concepts. A similarity measure sim(x, y) in the range [0, 1] can be
converted into a dissimilarity measure d(x, y) using: d(x, y) = 1 − sim(x, y)

Why is this important?
It’s the foundation for many data mining tasks like clustering, classification (k-Nearest
Neighbors), and anomaly detection.
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Numeric Data: Minkowski Distance (Lp Norm)

General Formula
For two n-dimensional data points x = (x1, ..., xn) and y = (y1, ..., yn), the Minkowski distance
is: d(x, y) = (

∑n
k=1 |xk − yk |p)1/p

Three Common Cases:
p = 1: Manhattan Distance (L1)

The ”city block” distance. You can only travel along grid lines. d1(x, y) =
∑n

k=1 |xk − yk |
p = 2: Euclidean Distance (L2)

The straight-line distance (”as the crow flies”). d2(x, y) =
√∑n

k=1(xk − yk)2

p = ∞: Supremum Distance (L∞)
The maximum difference along any single dimension. d∞(x, y) = maxk |xk − yk |
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Minkowski Distance: Worked Example
Let’s calculate the distance between two points in a 2D space: x = (2, 2), y = (5, 6)

1. Euclidean Distance (p = 2)

d2 =
√
(5 − 2)2 + (6 − 2)2

=
√

32 + 42

=
√

9 + 16
=

√
25 = 5

2. Manhattan Distance (p = 1)

d1 = |5 − 2|+ |6 − 2|
= 3 + 4
= 7

3. Supremum Distance (p = ∞)

d∞ = max(|5 − 2|, |6 − 2|)
= max(3, 4) = 4

Department of Computer Science & Engineering CSE 435:Data Mining Fall 2025 Measuring Similarity and Dissimilarity Slide 25/37



Numeric Data: Cosine Similarity

Concept
Measures the cosine of the angle (θ) between two non-zero vectors. It evaluates orientation,
not magnitude, making it excellent for comparing documents or profiles.

Formula:
simcos(x, y) =

x · y
‖x‖‖y‖ =

∑n
k=1 xkyk√∑n

k=1 x2
k

√∑n
k=1 y2

k

Interpretation (for non-negative data):
Result is in the range [0, 1].
simcos = 1 =⇒ Vectors point in the same direction (most similar).
simcos = 0 =⇒ Vectors are orthogonal (unrelated).
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Cosine Similarity: Worked Example

Consider two documents represented by term-frequency vectors: x = (3, 2) y = (2, 3)
Step 1: Calculate the dot product (x · y) x · y = (3)(2) + (2)(3) = 6 + 6 = 12
Step 2: Calculate the magnitude of each vector (‖x‖ and ‖y‖)

‖x‖ =
√

32 + 22 =
√

9 + 4 =
√

13

‖y‖ =
√

22 + 32 =
√

4 + 9 =
√

13

Step 3: Calculate the cosine similarity

simcos(x, y) =
12√

13 ×
√

13
=

12
13 ≈ 0.923

Conclusion: The vectors are very similar in orientation.
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Proximity for Binary Data
For binary vectors, we use a contingency table based on matching attributes.

Object y
1 0 Total

Object x 1 q r q + r
0 s t s + t

Total q + s r + t n
q: number of attributes where x = 1, y = 1
t: number of attributes where x = 0, y = 0

Simple Matching Coefficient (SMC)
For symmetric variables (0 and 1 have
equal weight, e.g., gender).

SMC =
q + t

q + r + s + t

Jaccard Coefficient
For asymmetric variables (0-0 matches
are ignored, e.g., presence of a disease).

J =
q

q + r + s
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Binary Proximity: Worked Example (Part 1/3)

Problem Data
We want to calculate the proximity between Jack and Mary using their attributes.

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N
Mary F Y N P N P N

Step 1: Convert to Binary Vectors We convert the attributes to a numerical binary format using
the following mapping:

Symmetric Attributes (Gender): M=1, F=0

Asymmetric Attributes (Fever, Cough, Tests): Y/P=1 (presence), N=0 (absence)

This gives us the binary vectors:

Jack (x): (Gender, Fever, Cough, Test-1, Test-2, Test-3, Test-4) = (1, 1, 0, 1, 0, 0, 0)

Mary (y): (Gender, Fever, Cough, Test-1, Test-2, Test-3, Test-4) = (0, 1, 0, 1, 0, 1, 0)
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Binary Proximity: Worked Example (Part 2/3)

Recall Binary Vectors:
Jack (x): (1, 1, 0, 1, 0, 0, 0)
Mary (y): (0, 1, 0, 1, 0, 1, 0)

Step 2: Create the Contingency Table By comparing the vectors attribute by attribute:

q (attributes where x = 1, y = 1): 2 (Fever, Test-1)

r (attributes where x = 1, y = 0): 1 (Gender)

s (attributes where x = 0, y = 1): 1 (Test-3)

t (attributes where x = 0, y = 0): 3 (Cough, Test-2, Test-4)
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Binary Proximity: Worked Example (Part 3/3)

Step 3: Calculate Similarity Measures
Simple Matching Coefficient (SMC)
(Used for symmetric binary attributes, considers all matches/mismatches)

SMC =
q + t

q + r + s + t

=
2 + 3

2 + 1 + 1 + 3

=
5
7

≈ 0.714

The SMC considers the mismatch in Gender and
the matches in absent symptoms (Cough, Test-2,
Test-4) equally important.

Jaccard Coefficient
(Used for asymmetric binary attributes, ignores 0-0 matches)

J =
q

q + r + s

=
2

2 + 1 + 1

=
2
4

= 0.5

The Jaccard coefficient focuses only on shared
presences (Fever, Test-1) and mismatches where at
least one attribute is present. It ignores attributes
where both are absent.

Department of Computer Science & Engineering CSE 435:Data Mining Fall 2025 Measuring Similarity and Dissimilarity Slide 31/37



Why Standardize Numeric Data?

The Problem of Varying Scales
Many machine learning algorithms and distance metrics are sensitive to the scale of input
features. An attribute with a large range (e.g., salary) can dominate and bias the outcome,
while an attribute with a small range (e.g., age) might be treated as less important.

Example: Consider calculating the distance between two customers.
Customer A: Age = 25, Salary = $50,000
Customer B: Age = 30, Salary = $60,000

The difference in salary ($10,000) is numerically much larger than the difference in age (5).
Without standardization, the salary attribute would almost completely determine the distance.

Goal of Standardization
To transform data attributes onto a common scale, ensuring that all features contribute more
equally to the analysis, without distorting the differences in the ranges of values.

Department of Computer Science & Engineering CSE 435:Data Mining Fall 2025 Measuring Similarity and Dissimilarity Slide 32/37



Method 1: Min-Max Normalization
Concept
This technique rescales a feature to a fixed range, typically [0, 1]. It preserves the relationships
among the original data values.

Formula (to scale to [0, 1]): For a value v of an attribute A, the normalized value v ′ is:

v ′ =
v −minA

maxA −minA

minA: The minimum value of attribute A.
maxA: The maximum value of attribute A.

Pros & Cons:
Pro: Guarantees all features will have the exact same scale. Useful for algorithms that
require bounded inputs.
Con: Highly sensitive to outliers. A single extreme value can compress the rest of the
data into a tiny sub-range.
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Min-Max Normalization: Worked Example
Consider an ’Income’ attribute (in thousands) with the following values:

{25, 30, 45, 60, 150}

Normalize the value v = 45 to the range [0, 1].

Step 1: Find the min and max values
minA = 25
maxA = 150

Step 2: Apply the formula

v ′ =
v −minA

maxA −minA
=

45 − 25
150 − 25 =

20
125 = 0.16

Result: The income of 45k is mapped to 0.16 on a [0, 1] scale. The extreme outlier (150) is
mapped to 1.
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Method 2: Z-Score Standardization
Concept
This technique transforms data to have a mean of 0 and a standard deviation of 1. The
resulting value is called a z-score.

Formula: For a value v , the standardized value v ′ is:

v ′ =
v − µ

σ
or v ′ =

v − x̄
s

µ or x̄ : The mean of the attribute.
σ or s: The standard deviation of the attribute.

The resulting z-score tells us how many standard deviations a value is from the mean.
Pros & Cons:

Pro: Much less sensitive to outliers than min-max normalization. It is the default choice
for many machine learning models.
Con: Does not map data to a specific bounded range.
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Z-Score Standardization: Worked Example

Problem: Using the ’Income’ data {25, 30, 45, 60, 150},
standardize the value v = 45.

Step 1: Calculate the Mean (x̄)

x̄ =

∑
xi

n =
310
5 = 62

Step 2: Calculate Standard Deviation (s)
The sum of squared differences is

∑
(xi − x̄)2 = 10430.

s2 = 10430
4 = 2607.5

s =
√

2607.5 ≈ 51.06

Step 3: Apply Z-Score Formula

v ′ =
v − x̄

s

=
45 − 62
51.06

=
−17
51.06

≈ −0.333

The income of 45k is 0.333 standard
deviations below the mean.
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